Trigonometrical Equations
normal

 જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta  +  \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta  = $

A

$\frac{\pi }{6}$

B

$\frac{\pi }{3}$

C

 $\frac{\pi }{3}$ or $\frac{\pi }{6}$

D

 $\frac{\pi }{3}$ or $\frac{2\pi }{3}$

Solution

${1+\sin \theta+\sin ^{2} \theta+\ldots \ldots=4+2 \sqrt{3}} $

${\Rightarrow \quad \frac{1}{1-\sin \theta}=4+2 \sqrt{3}} $

${\Rightarrow \quad \frac{1}{1-\sin \theta}=\frac{1}{4+2 \sqrt{3}}} $

${\Rightarrow \quad 1-\sin \theta=\frac{1}{2(2+\sqrt{3})(2-\sqrt{3})}} $

${=\frac{1}{2} \cdot \frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}} $

${=\frac{1}{2} \cdot \frac{2-\sqrt{3}}{4-3}=\frac{2-\sqrt{3}}{2}=1-\frac{\sqrt{3}}{2}}$

${\Rightarrow \quad \sin \theta=\frac{\sqrt{3}}{2} \quad \Rightarrow \theta=\frac{\pi}{6}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.